注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

发现数学,发现儿童

——做学生数学发现的引路人

 
 
 

日志

 
 
关于我

我,70后,中学高级教师,江苏省优秀青年教师、省特级教师后备,省教海探航杰出水手,无锡市名教师、无锡市优秀教育工作者、无锡市行知式青年教师,江苏省教育学会小学数学专业委员会会员、历任江苏省江阴市华士实验小学教导主任、校长办公室主任,新桥小学副校长,江阴市教育学会小学数学专业委员会副秘书长、江阴市小学数学中心组成员。三次获江苏省教海探航征文一等奖,三次获得省杏坛杯征文一等奖,连云港市中小学青年教师教学基本功大赛一等奖,有近200篇文章在《人民教育》《教学与管理》等核心期刊或主流期刊发表。

网易考拉推荐
 
 

39、南京之行,我的转化之旅--1  

2009-03-27 20:55:57|  分类: 教育日记 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

 

【引子】

感谢省教研室,感谢小数网和全体版主朋友们,给我这次锻炼机会,感谢大家的真知灼见,感谢夫子庙小学全体师生。元月5日接到通知,知道省教研室将组织一次版主同课异构观摩活动。一开始是有些顾虑,这次虽说是只面向全体版主而设的研讨,毕竟是上至省教研室教材组,下至大市教研室和遍及全省各地的教学骨干云集一堂的全省观摩会,上好可以一课成名,上不好一课败名。是申报还是放弃?快四十的人了,中学高级也上了,上不好毁我半生“英名”。哈哈,啥英名。咱也没有成名成家,怕啥!况且本来就是一次同课异构的研讨活动,自己对转化以及教材的编排有一些认识和理解,何不积极争取一试手脚,让同课异构真正体现出不同教学思路的碰撞。于是利用休息日在截稿日期前精心设计了一份“转化”教学预案。之后,因为学校开学事情繁杂,忙得忘了自己,忘了这项任务。三月初接到通知:23日到南京夫子庙小学上课。于是才认真准备起来。先简单说说教材。

【教材浅析】

大家都知道,转化是苏教版国标小学数学“解决问题的策略”教材体系的最后一个知识点,是继列表、画图、枚举、倒推、替换之后的一次系统学习转化策略教学课。但是,“转化”这一策略没有前面学习的各种策略来得具体,它的内隐性和不确定性让我们产生教学迷茫。究竟策略要不要教?

一种观点认为策略是方法的上位概念,是解决问题的方向,是一种思路,是一些优秀解决问题方法的综合体,或者叫做一种解决问题的智慧。是智慧而不是具体的方法,只能潜移默化地渗透。因此,策略不好直接编排来教学,可以编排教学的是方法。

另一种观点认为策略是解决问题思路,思路总有路可循,我们就是要让学生在这样的思路探寻中获得体验,体验各种不同策略的优势,掌握一定的策略指导自己解决问题的方向。他们认为策略可以教。但是又不知道从哪里教起?不知道应该教到啥程度为止?个人观点,策略是可以传授的。关键教材要精选一些典型的用处较大的策略来教学,而且一定要找准教学的载体(例题和练习)。实际上,转化对于学生而言不是新知识,而是将已往运用转化解决实际问题集中于此,加以梳理,概括,总结,提升,让学生体验到转化并不陌生,转化随处可见。同时体验到转化是学习新知识、掌握新技能的重要手段。学生在一年级学习加减法时,已经运用转化的策略解决问题了,如凑十法的化零为整,破十法的化整为零。除数是小数的除法转化为除数是整数的除法、异分母分数加减法转化为同分母分数加减法、小数乘法转化为整数乘法等等,在图形领域那就更多了,几乎所有图形的面积公式、立体图形的体积计算公式都运用了转化策略来推导。

虽然学生已经自觉不自觉运用过转化策略解决问题,但是对于学生来说,以前的学习都是零散的,浅层次的,或者叫渗透于各知识领域,学生在这样的学习经验基层上,我们必须尊重学生已有经验,学生学习转化不是零起点。所以本人的设计是从学生已有经验开始的,让学生在复习旧知中回顾总结,概括转化方法,并上升到策略高度来审视已学知识。这样还可以架构知识之间的内在联系,突出数学知识的系统性。突出转化策略在学生新知学习中有着及其广泛的应用,体验到转化策略的普遍性和实用性。在此基础上,指导学生有意识运用转化解决一些具体问题,使学生感受到,转化不仅能让新知识转化为已学的旧知识,还能让一些复杂的问题简单化,突出本课两个教学重点:化新为旧,化繁为简。无论是化新为旧,还是化繁为简,必须遵循等量转化的原则。在图形中可以是等积变形,可以是等周变形,在数学与代数领域可以是等量变形。无论是谁转化为谁,抓住其中的不变量是我们实施有效转化的关键。至于转化的方法,本人认为只有图形领域的方法是具体的普遍适用的,有的老师把它概括为平移和旋转两种方法。实际平移和旋转都需要将一部分割下来,移拼到另一个地方去,所以我认为在图形领域中的转化方法运用得最广泛最显著的是割补法。数形结合不是解决问题的具体方法,只不过是解决问题的一个拐杖,一种寻找解决问题的突破口。而且,画图是一种解决问题的策略,四年级时已经学过。我们不能说数转化成形问题就解决了。再如有的老师在教学看图写分数最后一题时,将换一种思路或者倒过来想看成转化的具体方法,我觉得这样做不科学。不仅因为倒过来想不符合转化的特征,而且与学生已经学习的策略出现重叠现象。转化,要弄明白谁转化成了谁?(待续)

  评论这张
 
阅读(89)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018